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WHEN NORMAL AND EXTENSIVE FORM
DECISIONS DIFFER

TEDDY SEIDENFELD

Carnegie Mellon University

0. Introduction and outline.

The “traditional” view of normative decision theory, as reported (for
example) in chapter 2 of Luce and Raiffa’s [1957] classic work, Games
and Decisions, proposes a reduction of sequential decisions problems to
non-sequential decisions: a reduction of extensive forms to normal forms.
Nonetheless, this reduction is not without its critics, both from inside and
outside expected utility theory.! It isemy purpose in this essay to join
with those critics by advocating the following thesis.

THESIS: Sequential decisions, in extensive form, may lead to different
outcomes than their non-sequential, normal form versions, in a variety of
problems where the normal form fails to eliminate some “future” options
that will not be chosen.

My plan for this paper is to review the non-equivalence of extensive and
normal forms in the following contexts and show how the thesis applies
in each one: .

In section 1, I rehearse the Harsanyi-Selten (1988) argument, applied
to Game Theory. They use this thesis to distinguish “perfect” from “im-
perfect” equilibria in extensive forms and show that this distinction is lost
in the reduction to normal forms. They appeal to a “trembling hands”
model of players’ options to salvage a modified version of the reduction.

In section 2, I address an ingenious argument, due to M. Goldstein
(in his [1983] “Prevision of a Prevision”) which uses the extensive-normal
form reduction to constrain a coherent (Bayesian) agent’s current beliefs
about his/her future degrees of belief. In particular, I point out (§ 2.1)

!See LaValle and Fishburn [1987] for a useful review of the issue for problems involving
one decision maker.
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where Goldstein’s result leads to excessive use of Bayes’ rule for updating:
Temporal Conditionalization.? And I point out (§ 2.2) where it precludes
the use of Bayes’ rule in updating finitely additive probabilities.

Last, in section 3, I report on some relevant consequences of using sets
of probabilities: Robust Bayesian analysis. In collaborated work with
L. Wasserman (Statistics, CMU) we investigate a phenomenon we call
“dilation” of sets of probabilities. This occurs when the set of uncon-
ditional probabilities for an event are (properly) smaller than the set of
conditional probabilities for that event (given each outcome of a parti-
tion). I illustrate how “dilation” leads to a violation of the reduction of
extensive to normal forms. In § 3.1 and § 3.2 I report some of our work-
in-progress indicating necessary and sufficient conditions for “dilation”.

1. Harsanyi & Selten’s “trembling hands”

John Harsanyi and Reinhard Selten (1988) question the adequacy of
Nash’s concept applied to the normal-form version of an extensive form
game. They deny the equivalence of normal and extensive game forms.
Instead, they advocate a refined equilibrium concept for extensive form
games, based on a “trembling hands” model of choice.

An equilibrium for extensive forms is acceptable, according to their ac-
count, provided it is robust over small perturbations in choice. One of
their examples from (1992) beautifully illustrates the difference between
the two kinds of equilibria. Each player has two pure strategies: In the
extensive form, player-1 had choice set {a, b} and, provided his /her infor-
mation set is reached (provided player-1 chooses a), player-2 has a choice
set {c,d}. In the corresponding normal form, the strategies are {4, B}
for player-1 and {C, D} for player-2. Payoffs are displayed in the next two
figures.

2The analysis of § 2.1 addresses Goldstein’s reasons. I. Levi [1987] successfully responds
to a variety of arguments purporting to show that Bayes’ rule is mandatory for updating
beliefs. '
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Figure 1.1 — the extensive form game
Player-1’s payoff’s are listed above Player-2’s

Figure 1.2 — Normal form of the game, above
Player-1’s payoffs appear in the top-left corners.

Observe that, corresponding to the normal form Figure 1.2, there are
two equilibria: the pairs {4, C} and {B, D}. However, the latter in “im-
perfect” in the extensive form of Figure 1.1, as that requires player-2 to
(threaten to) play option d in case choice node 2 is reached. Of course, at
node 2, player-2 maximizes by playing option c instead of d, and player-1
knows this fact. Thus, the normal form equilibrium, {B, D}, depends, in
the extensive form, upon ignoring that option D will not be chosen by
player-2 if player-1 chooses B. To put the point another way, the nor-
mal form fails to distinguish between the extensive form of figure 1.1 and
a different game where both play simultaneously, i.e., where player-2’s
information set does not reflect whether or not player-1 chooses a or b.

In order to avoid “imperfect equilibria”, Harsanyi and Selten alter the
basic moves in a game so that an agent selects one from a set of distribu-
tions (on pure options). A player chooses a mixed strategy rather than a



454

pure option. Figure 1.3 gives the normal form for the “trembling hands”
perturbated game, where players may choose one of two mixed strategies
in a perturbed extensive form game (not pictured).

In the perturbed game, the normal form optjons. given in Figure 1.3
arise by using a two point distribution, with probabilities (1 — ¢) and ¢
assigned to each pure option in the corresponding perturbed extensive
form.

C* D*
2-5e+de? | -247e4e2
A%
2+3$+4s2 —2+98—482
1+€—482 1—38+482
B*

3—8—482 3—58+4e2

Figure 1.3

In the perturbed versions of the game, this difference between the two
solutions pairs (which are in equilibrium in game form 1.2) is made ev-
ident. In the normal form 1.3, only the pair {A*, C*} is in equilibrium.
The {B*, D*} pair is not in equilibrium since, when player-1 chooses B*,
player-2 improves his/her (expected) payoff by shifting from D* to C*,
i.e., D* is not player-2’s best response to B*.

The Harsanyi-Selten point is that “imperfect equilibria” are deficient
because, in extensive game forms, they require a player to choose an
outcome which fails to maximize his/her utility. Nonetheless, the suspect
choice is justified by Nash’s criterion of equilibrium in the corresponding
normal form. In the extensive form of their game, player-2 does not
maximize utility by choosing option d (if node 2 arises) — choice d is
an Iidle threat. That move is inconsistent with the assumption that the
players are utility maximizers and model each other that way. “Trembling
hands”, using sets of “c-mixtures”, is Harsanyi and Selten’s ingenious
way of reconstituting the reduction of extensive to normal forms in game
theory. In section 3, I shall use sets of “c-mixtures” of probabilities to
defeat the extensive-to-normal form reduction! '

2. The “prevision of a prevision” (M. Goldstein, 1983)

Goldstein’s result concerns a coherent agent’s currents beliefs about his /
her future beliefs. It rests on the following, simple (yet suspect), lemma
concerning sequential decisions.
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LEMMA (Goldstein). Let (terminal) decision D1 lead to the “penalty” A.
Suppose, also, there is a (sequential) option O to defer the choice between
“penalties” A and B. Then, on pain of a sure loss, you may not now
prefer Dy over O.

His proof (as summarized below), pivots on the extensive-to-normal
form reduction.
“ PROOF” (reductio): Suppose, now, you prefer D; to O by an amount
greater than C. Then you are willing to pay amount C to receive D; over
O. But then you suffer the sure loss C' as you might just as well have only
penalty A: first choice O (now), then A (later), rather than the larger
penalty A + C.

A+C A B

DNyith
penalth\C later

now

Figure 2.1 — the extensive version of Goldstein’s argument

Goldstein’s proof uses the reduction of the sequential option O to its
normal form: a choice between penalties A and B. Goldstein compares
A + C and the better outcome A, without concern about what you know
(now) you will choose “later”. The “counterexamples” involve problems
where you know (now) that were you to opt for O, then later you would
choose B, which you now find inferior to A + C.

Next, let P;(E) denote your (currently unknown) probability for event
FE at the future time t. Let P,ow(E) be your current probability for F.
And let Pyow (P:(E)) be your current expectation for the random variable
P;(E). The result about your prevision of your (future) previsions is as
follows.

THEOREM (Goldstein). Prow (Pi(E)) = Pyow(E).2

PROOF: By the previous lemma on the value of deferred options.

Let us explore circumstances when this “theorem” fails, when the
“lemma” fails, because extensive forms do not reduce.

3 A related condition, called the “Principle of Reflection”, is reported in van Fraassen’s
(1984] “Belief and the Will”. See, e.g., Levi [1987] and Talbott [1991] for discussions.
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2.1 Bayes’ rule for updating — temporal conditionalization.‘

The dynamic version of Bayes’ rule is this.
Suppose B summarizes the evidence acquired between (later) time ¢
and now, then
Py(s) = Paou (s | B).

If this temporal rule were mandatory then, as an extreme case: when you
don’t learn new evidence, you can’t just change from one (coherent) distri-
bution to another. Or, in a slightly different form using Goldstein’s result,
you aren’t coherent if you now know that you are about to change your
previsions from P to P’ # P, though you will acquire no new evidence.
However, in either of these cases the “lemma” does not apply as you are
not prepared to equate the extensive and normal forms. The “lemma”
fails to take into account that you know (now) certain choices will be re-
jected, yet you are asked to contrast such rejected (future) options with
live current options. .

The sequential argument offered on behalf of temporal conditionaliza-
tion requires a questionable reduction to a normal form decision. The
reduction is invalid because, by the agent’s current lights, non-options
are used in the normal form decision in order to show that violating the
proposed dynamic rule leads to incoherent choices in the guise of a sure
loss.

2.2 Non-conglomerability and the extensive to normal form re-
duction.

Next, I investigate where Goldstein’s theorem precludes the use of
Bayes’ rule for updating. The case involves the use of probabilities which
are finitely, but not countably additive. Let P be a f.a. probability defined
on a o-field of subsets of X. Let E,[] be the P-expectations for bounded,
measurable functions f. And let 7 = {hy, ho, ... } be a countable partition
of X.

DEFINITION (Dubins/de Finetti): Say that P is conglomerable in 7 pro-
vided that for each bounded, measurable function f, inf, Ey[f | h] <
Ep[f] < sup, Ep[f | h].

However, each P which is not o-additive suffers a failure of conglom-
erability for some event E. (See Schervish et al, [1984].) That is, there
exists an event F, a partition 7 and € > 0 such that

P(E|h)<P(E)-—¢ (i=1,...)

HEURISTIC EXAMPLE (Dubins, 1975). Figure 2.2 displays the finitely
additive probabilities for “atoms”. To help interpret P, assume that given
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E, an integer ‘i’ is chosen “at random”, P(h = ; | E) = 0. Given E°, a
fair coin is flipped until a head appears and the number of flips determines
i, P(h =i | E°) = 27°. Also assume P(E) = P (E°) = 1/2, leading to
the values in Figure 2.2.

hy  hy Ky
E | o] o 0
E° 2—2 2—'—3 2—(i+l)

Figure 2.2 — Dubins’ example
P(E)=P(E®) =1/2, P(h; | E)=0and P(h; | E®) = 27 (t=1,...).

Thus, P (h;) = 2=@+D and P(E | h;) = 0. So, 0 = P(E|h) <
P(E)=1/2(i=1,...) and we see that P is not conglomerable in .

Suppose the agent has P for his/her current personal probability, will
learn which element of 7 obtains at ¢, and plans to use temporal condi-
tionalization to update at ¢t. Then, Poow(E) =1/2 and P,(E) = 0. Thus,
Prow (Pi(E)) = 0 # Phow(E) = .5, and the “prevision of a prevision” the-
orem fails. Once again, Goldstein’s “lemma” is false as the extensive form
does not reduce to the normal form for decisions involving the random

variable P;(E).

3. Dilation of sets of probabilities (work with Larry Wasserman)*

In this section, I report on a phenomenon we call “dilation”, which leads
in a different way to a non-equivalence of extensive and normal form
decisions.

Let P be a (convex) set of probabilities on algebra A. For an event E ,
denote by P.(E) the “lower” probability of E: infp {P(E)} = P.(E) and
denote by P*(E) the “upper” probability of E: sup, {P(E)} = P*(E).
Let m = (By,...,By) be a (finite) partition.

DEFINITION: The set of conditional probabilities {P (E | B;)} dilate if

P,(E|Bi))< P(E)<P*(E|B;) (i=1,...,n).

4An illustration of what we here call “dilation” was reported by Levi and Seidenfeld
to I. J. Good in connection with Good’s [1966] argument about the value of new
evidence. That communication prompted Good’s [1974] reply. Additional rebuttal is
found in my [1981], where I link “dilation” with randomization in experimental design.
A recently published example of dilation, relating to the worth of new evidence, appears
on pp. 298-299 of P. Walley’s [1991].
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That is, dilation occurs provided that, for each event (B;) in a partition
7, the conditional probabilities for an event FE , given B;, properly include
the unconditional probabilities for E. Dilation of conditional probabilities
is the opposite phenomenon to the more familiar “shrinking” of sets of
options with increasing shared evidence.®

HEURISTIC EXAMPLE OF DILATION
Suppose A is a highly “uncertain” event. That is P* (A) — P.(A) ~ 1.
Let {H, T} indicate the flip of a fair coin whose outcomes are independent
of A. That is, P(A, H) = P(A)/2 for each P € P. Define the event E by,
E = {(A,H),(A%,T)}. It follows, simply, that P(FE) = .5 for each P ¢ P.
Then 0~ P.(E|H)< P(E)= P*(E)< P*(E|H)=~1
and 0~ P(E|T) <P*(E):P*(E)<P*(EIT)z1.
Thus, regardless how the coin lands, the conditional probability for event
E dilates to a large interval, increasing from a “determinate” value 5.
This example mimics Ellsberg’s (1961) “paradox”, where the mixture
of two “uncertain” events has a “determinate” probability. In different
terms, event F is “pivotal” over the set P.

Next, I indicate by example, that extensive forms do not reduce to
normal forms when dilation is present.

HEURISTIC EXAMPLE (continued): Consider a sequentia) (that is, exten-
sive form) choice between: <

terminal option Dy — Win $.75 if E; Lose $1.25 if E¢.
Or, sequential option O — observe the coin flip and choose between
Dy — an even money $1 bet on E
and D3 — a “fee” of $.50.

Thus, option D; = D; (an even money $1 bet on E)+$.25 “fee”. Fig-
ure 3.1 illustrates the extensive form problem. [For convenience, hereafter,
assume dollars are linear in utility.]

SFor discussion of different senses in which a set of conditional probabilities may
“shrink” with increasing evidence, see Schervish and Seidenfeld [1990].
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$LifE $1ifE
-$1if E€ ~$.50 -$1if E€

$.75ifE
-$1.75if E€

now

Figure 3.1 — Sequential Decision associated with
the heuristic example of dilation.

Observe that in a pairwise choice between D; and D5, option Dy (sim-
ply) dominates option D;. Therefore, in the normal version of this prob-
lem D, is not admissible. (D; fails to maximize expected utility for each
P € P.) However, in the sequential (extensive form) problem above, after
having seen the coin flip, conditional upon either H or T, both choices
Ds and Dj are (pairwise) admissible according to expected utility consid-
erations. That is, for some P € P D, has higher expected utility than
D3 and for other probabilities this inequality reverses. But D3 maximizes
“security”: D3 has a better “worst” payoff, (-$.50 versus -$1.00)
or D3 has a higher, minimum expected value (P-minimax).®

Thus, anticipating choices that will be made if the sequential option
is taken, D3 is the result of choosing O “now”. Then, to complete the
analysis, compare the two “live” options available “now”: a choice between
Dy and D3. But, between these two options Dj fails to maximize expected
utility for each P € P. Hence, D;, which is inadmissible in the normal
form, is the (sole) admissible option in the extensive form decision.”

6T allude, here, to decision theories like Levi’s [1980] where an option is admissible from
a choice set provided (i) it maximizes expected utility for some probability/utility in
the agent’s set of probabilities and utilities, and (ii) it maximizes a “security” index
among those options passing the first condition. In the example here, “security” may
be indicated by a maximum value or by a Iminimax value.

As an aside, I note that I-minimax requires an extraneous stipulation when sets of
utilities are used. Specifically, depending upon how a set of utilities is standardized,
i.e., depending upon which consequences are assigned 0 and 1, different options may
be declared I'-minimax.

TOf course, even when extensive forms do not reduce to normal forms, “backward
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Using this example as a template, non-equivalence of extensive and
normal forms can be manufactured whenever dilation occurs. In the fol-
lowing two sub-sections, I report on necessary and sufficient conditions
for dilation. ‘

3.1 Independence and dilation.

Independence is sufficient for dilation.

Let Q be a convex set of probabilities on an algebra A and suppose we
have access to a “fair” coin which may be flipped repeatedly: coin-flip
events are confined to algebra C. Assume the coin flips are independent
and, with respect to Q, also independent of events in A. Let P be the
resulting convex set of probabilities on A x C.8

THEOREM. If Q is not a singleton, there is a 2 x 2 table of the form
(E,E°) x (H,T) where both:

P.(E|H) < P.(E) = 5= P*(E) < P*(E | H)
P.(E|T) < P.(E) = 5= P*(E) < P*(E | T)

That is, dilation occurs.

PROOF (sketch): Let A € A be “uncertain” with respect to Q. Use the
“fair” coin to form event F' where P,(F) < .5 < P*(F). Then mimic the
“Ellsberg” heuristic example, above. ‘ U
Independece is necessary for dilation.
Let P be a convex set of probabilities on an algebra .A. the next result
is formulated for subalgebras of 4 atoms: (p1,p2,P3,04)

B, B,

Al P | P

Ay P3 | Py

Figure 3.2 — the case of 2 x 2 tables.

Define the quantity Sp (A1, B1) = p1/ (p1 + p2) (p1 + ps) = P(A;,By)/
P (A1) P(By). Thus, Sp (A1, By) = 1iff A and B are independent under
P.

induction” remains a valid sequential decision rule! See my [1988] discussion of this
issue in connection with decision rules that abandon the “independence”. postulate.
8The condition involving C is similar to, e.g., DeGroot’s [1970] assumption of an ex-
traneous continuous random variable, and is similar to the “fineness” assumptions in
the theories of Savage [1954], Ramsey [1926], Jeffrey [1965], etc.
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LEMMA. If P displays dilation in this sub-algebra, then
infp {Sp (A1, B1)} <1 < supp {Sp (A1, B1)}.

PROOF: Direct calculation.

THEOREM. If P displays dilation in this subalgebra, then there exists
P# € P such that '
Sp# (A1, B1) = 1.

PROOF: By the lemma, there exists P; and P, such that S P, (A1,B1) <
1< sz (Al,Bl). :

Write P, = P + (1 — 2)P, and note that Sp, (A1, B1) is a continu-
ous (quadratic) function of z, with coefficients involving P; (A1), Py (By),

Py (A;) and P;(B;). By the mean value theorem, for some 0 < z <
1, Sp, (A1,By) = 1.

3.2 Dilation and e-contamined models.

In this subsection, I report additional details about dilation for a par-
ticular (convex) set of distributions, known as the e-contaminated model.
Given a probability P and 1 > ¢ > 0, define the convex set

Pe = {(1 - €)P +eQ : Q an arbitrary probability}.

This “model” is popular in studies of Bayesian Robustness. (See, e.g.,
Huber, 1981.) As before, the following result applies to sub-algebras of 4
atoms.

THEOREM P, experiences dilation iff

case 1: if Sp (A1, By) > 1,
£ > [Sp(A1,B1) —1]e max{P (Ay) /P (As); P(B;) /P (B2)}

or

case 2: if Sp (41, B1) < 1,
£ > [1 — SP (Al,Bl)] omax{l,P(Al)P(Bl)/P (AQ)P(BQ)}

or

case 3: if Sp (44, By) =1,
P is internal to P.

(I omit the proof of this theorem.)



462

Thus, dilation occurs in the e-contaminated model if and only if P
is close enough (in the tetrahedron of distributions) to the saddle-shaped
surface of distributions which make A and B independent.? The Figure 3.3
illustrates the “saddle” of probabilities satisfying P(4, B) = P(A)P(B).

4. Summary

I have discussed three decision contexts where extensive forms do not
reduce to normal forms:

1. Game theory — The Harsanyi-Selten argument about “imperfect”
equilibria.

2. Denying “The Prevision of a Prevision” (M Goldstein’s argument)
2a — involving failures of temporal conditionalization
2b — involving non-conglomerability of finitely additive probability

3. Dilation of Sets of Probabilities.

The common reason why there is no reduction for these cases is that
particular “future” options, which the agent knows (in advance) will not
be chosen in the sequential decision are, nonetheless, used as though they
were feasible options in the normal form. That is, an option which is
inadmissible in the normal form may be admissible in an extensive form
(generating that normal form). Rival choices which defeat that choice in
the normal form turn out to be not feasible in the sequential form.

R

R

Tetrahedron showing “saddle” surface of distributions
which make events A and B independent

Figure 3.3

9As a contrast, the Density Ratio model is immune to dilation. Let P be a fixed
probability defined on the atomic algebra A, with “atomic” probabilities denoted Pi.
The Density Ratio model on A, for k > 1, R(P, k) = {Q : q:/q; < kepi/p;}.
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